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Abstract: As a meta-heuristic algoriTthm, particle swarm optimization (PSO) has the advantages of
having a simple principle, few required parameters, easy realization and strong adaptability. However,
it is easy to fall into a local optimum in the early stage of iteration. Aiming at this shortcoming,
this paper presents a hybrid multi-step probability selection particle swarm optimization with
sine chaotic inertial weight and symmetric tangent chaotic acceleration coefficients (MPSPSO-ST),
which can strengthen the overall performance of PSO to a large extent. Firstly, we propose a hybrid
multi-step probability selection update mechanism (MPSPSO), which skillfully uses a multi-step
process and roulette wheel selection to improve the performance. In order to achieve a good balance
between global search capability and local search capability to further enhance the performance of
the method, we also design sine chaotic inertial weight and symmetric tangent chaotic acceleration
coefficients inspired by chaos mechanism and trigonometric functions, which are integrated into the
MPSPSO-ST algorithm. This strategy enables the diversity of the swarm to be preserved to discourage
premature convergence. To evaluate the effectiveness of the MPSPSO-ST algorithm, we conducted
extensive experiments with 20 classic benchmark functions. The experimental results show that
the MPSPSO-ST algorithm has faster convergence speed, higher optimization accuracy and better
robustness, which is competitive in solving numerical optimization problems and outperforms a lot
of classical PSO variants and well-known optimization algorithms.

Keywords: particle swarm optimization; multi-step; roulette wheel selection; chaotic inertial weight;
symmetric chaotic acceleration coefficients; numerical function optimization

1. Introduction

With the development of scientific research, engineering technology and social economy,
optimization issues have gradually become high dimensionality, high level and great difficulty.
Conventional optimization has become increasingly unsuitable for dealing with these optimization
problems. In order to adapt to the upgrading of optimization problems better, people have a very urgent
need for the upgrading of optimization technology. In recent years, the development of optimization
algorithms has been a very prevalent research direction. In optimization algorithms, meta-heuristic
optimization methods play a vital role, such as particle swarm optimization (PSO) [1] grey wolf
optimizer (GWO) [2] the whale optimization algorithm (WOA) [3], differential evolution (DE) [4]
gravitational search algorithm (GSA) [5] moth-flame optimization (MFO) [6] biogeography-based
optimization (BBO) [7] sine cosine algorithm (SCA) [8] krill herd algorithm (KH) [9] artificial bee colony
(ABC) [10] ant lion optimizer (ALO) [11]
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Among these well-known optimization algorithms, the PSO algorithm has attracted considerable
attention as a classic swarm intelligence algorithm. The PSO algorithm is inspired by the predation
behavior of birds. Since its introduction in 1995, it has undergone many improvements to form many
PSO variants, which are now widely used in various fields of science and society, such as feature
selection [12] artificial intelligence [13] wireless sensor network [14] energy management system [15]
public resource construction [16] and so on.

The PSO algorithm has the advantages of having a simple principle, few required parameters,
fast convergence and easy realization. However, the search direction of PSO is to approach the global
optimum, which makes the information exchange in the group in a single direction, so that the particles
quickly gather in a small search area, resulting in the poor swarm diversity [17], which makes it easy
to fall into local extremes and get poor convergence accuracy. The swarm diversity information can
reflect the distribution of the entire particle swarm. The lack of swarm diversity will cause the swarm
to converge prematurely to some local optimums. At present, the two most widely used measures of
swarm diversity are population distribution entropy [18] and population average particle distance [19]
The algorithm performs cluster analysis on the individuals in the population, and then the population
distribution entropy can be obtained, which reflects the particle distribution of the population in each
area of the search space. For each evolutionary generation of the population, the average particle
distance of all individuals in the entire population must be calculated, which expresses the dispersion
degree of the individual in the population.

To overcome the above shortages, researchers have conducted a lot of research and made
improvements on PSO to optimize the algorithm performance. The first direction is an updated
mechanism improvement, such as comprehensive learning PSO (CLPSO) [20] orthogonal multi-swarm
cooperative PSO [21] enhanced particle swarm optimization with levy flight (PSOLF) [22] hybrid chaotic
quantum behaved particle swarm optimization algorithm (HCQPSO) [23] Qin et al. [24] proposed
a deep-learning-driven PSO algorithm (DLD-PSO). It introduced the matrix of weights which are
extracted from the deep learning prediction model into the PSO update mechanism. These improved
mechanisms can effectively speed up the convergence speed and improve the search ability of the
method. The second direction is parameter improvement, that is, improving the inertia weight and
acceleration coefficients. If the global searching capability is strong, the convergence speed would
be fast, and it is less likely to be limited by the local minimum, but the convergence accuracy is low.
The strong local search capability is the opposite [25] To find a balance between global search and
local search, the values of inertia weight and acceleration coefficient are particularly important. In [26]
Tian et al. introduced sigmoid-based acceleration coefficients and established an appropriate ratio
between exploration and exploitation, which successfully achieved a balance between global search
and local search. In [27] Arasomwan et al. introduced chaos mechanism and adaptive strategy to the
inertia weight, which used the regularity, randomness and ergodicity of chaos and avoided premature
convergence. In [28] Taherkhani et al. obtained different adaptive inertial weight based on the optimal
position and distance in particle history, which improved the convergence accuracy and speed of the
algorithm. The third direction is to combine PSO with other algorithms. Zhang et al. [29] introduced the
DE-PSO algorithm, which combined PSO and DE to realize the algorithm using a differential operator
and enrich the swarm diversity. Garg [30] proposed a hybrid PSO-GA algorithm by incorporating
genetic operators into PSO. The balance between exploration and exploitation abilities have been
further improved. Javidrad et al. [31] used the simulated annealing algorithm (SA) as a local search
mechanism, which improves the convergence behavior of PSO, forming a PSO-SA hybrid algorithm.

Although these PSO variants inherit the advantages of PSO and overcome some shortcomings of
PSO, which makes them increasingly have advantages over conventional optimization, the deficiencies
of being easily trapped in a local optimal solution and lacking swarm diversity still exist [32] which
leads to the unsatisfactory in addressing complex optimization problems with different characteristics.
The above methods only improve one aspect of PSO, like convergence speed, premature convergence
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and the balance between exploration and exploitation. Therefore, these methods are unable to deal
with more complicated optimization problems.

In this paper, a hybrid multi-step probability selection particle swarm optimization with sine
chaotic inertial weight and symmetric tangent chaotic acceleration coefficients called MPSPSO-ST is
proposed. MPSPSO-ST is a comprehensively improved algorithm that can modify many aspects of
PSO for numerical function optimization as follows:

1. The multi-step probability selection process can enhance the search ability of particles and avoid
premature convergence, which also has a positive effect on convergence speed.

2. The sine chaotic ω and symmetric tangent chaotic c1, c2 enrich the swarm diversity and
achieve a better balance between the exploration and exploitation ability, which offers higher
convergence accuracy.

The remainder of this paper is organized as follows: Section 2 presents the related theory about
PSO. Section 3 describes the proposed MPSPSO-ST algorithm in detail. In Section 4, several well-known
optimization methods and PSO variants are adopted to verify the performance of MPSPSO-ST in
numerical optimization. Finally, Section 5 consists of the conclusions drawn in this paper and the
summary of future work.

2. Related Theory about PSO

PSO is a kind of swarm intelligence optimization algorithm, which is derived from the study of
bird swarm predation behavior. Each particle in the particle swarm represents a possible solution to
a problem. Through the simple behavior of individual particles and the interaction of information
within the group, the intelligence of solving problems is achieved.

PSO is a population-based search algorithm. An individual in the bird swarm is abstracted into a
particle. Each particle searches for the optimal solution in the search space separately. The optimal
solution that each particle can currently search for is recorded as the current individual optimal value,
and then the individual optimal value is shared with other particles in the entire particle swarm.
The optimal individual extreme value is found as the current global maximum of the whole particle
swarm. All particles in the particle swarm continually update their positions and speeds based on the
current individual extremes found by themselves and the current global optimal solution shared by
the entire particle swarm. The particle will gradually approach the optimal position and finally find
the global optimum during the iterative process.

When searching in D-dimensional target search space, each particle has two parameters, position
and velocity. The position of the ith particle is represented as xi = (xi1,xi2, . . ., xiD), i = (1, 2, . . . , N),
where N is the number of population. The velocity of the ith particle is represented as vi =

(vi1,vi2, . . ., viD), i = (1, 2, . . . , N). The velocity and position of the particles are iterated according to the
following iterative equations:

v(t+1)
i = vt

i + c1 · r1 · (pbestt
i − xt

i) + c2 · r2 · (gbestt
− xt

i) (1)

x(t+1)
i = xt

i + v(t+1)
i (2)

xt
i indicates the position of the tth iteration of the ith particle. vt

i denotes the speed of the tth
iteration of the ith particle.c1 and c2 are two positive constants, generally c1 = c2 = 2; r1 and r2 are
random numbers in the interval [0, 1]. Each particle is evaluated for fitness value f (xi) by objective
function f . Each particle position represents a solution to the problem, which has a fitness value f (xi),
given by the objective function f . During each iteration process, the particles memorize the position
with the best fitness value by comparing the fitness value of each position and update pbest, gbest. pbestt

i
is the current individual optimal position of the particle and gbestt is the current global optimal position
of the entire particle swarm. Self-cognition component term c1 · r1 · (pbestt

i − xt
i) pushes the particles to

move toward their own best positions found so far. Social cognitive component term c2 · r2 · (gbestt
− xt

i)
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encourages the particles to move toward the global best position found currently. vi ∈ [−vmax, vmax],
and vmax is a constant. vmax often set to four in practice [33]. When the particle velocity exceeds the
interval, let the particle velocity vi be equal to the upper or lower bound of the interval (−vmax or vmax)
so that the particle velocity is controlled within a reasonable range. Equations (1) and (2) are called the
basic PSO algorithm.

In [34] Shi and Eberhart introduced inertial weight ω into the memory term in Equation (1) and
found that it can balance the global search ability and local search ability better. The improved iterative
equations are formulated as follows:

v(t+1)
i = ω · vt

i + c1 · r1 · (pbestt
i − xt

i) + c2 · r2 · (gbestt
− xt

i) (3)

x(t+1)
i = xt

i + v(t+1)
i (4)

where ω is a linear decreasing weight strategy defined as follows:

ω = ωmax −
M j

Mmax
· (ωmax −ωmin) (5)

where ωmin and ωmax are the initial and final values of the inertial weight, respectively, M j is the
current iteration number and Mmax is the maximum iteration number.

Since the inertial weight ω improves the performance significantly, scholars take it as the
standard PSO algorithm, which has become the basis of the current research and improvement of
PSO. The pseudo-code of the standard PSO algorithm is shown in Figure 1. Inspired by this linear
decreasing ω, some articles have proposed different strategies on inertial weight [28,35].

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 28 

 

cognitive component term 2 2 ( )t t
ic r gbest x⋅ ⋅ −  encourages the particles to move toward the global 

best position found currently. max max[ , ]iv v v∈ − , and maxv  is a constant. maxv  often set to four in 

practice [33]. When the particle velocity exceeds the interval, let the particle velocity iv  be equal to 

the upper or lower bound of the interval ( maxv−  or maxv ) so that the particle velocity is controlled 
within a reasonable range. Equations (1) and (2) are called the basic PSO algorithm.  

In [34] Shi and Eberhart introduced inertial weight ω  into the memory term in Equation (1) 
and found that it can balance the global search ability and local search ability better. The improved 
iterative equations are formulated as follows: 

( 1)
1 1 2 2( ) ( )t t t t t t

i i i i iv v c r pbest x c r gbest xω+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (3) 

 ( 1) ( 1)t t t
i i ix x v+ += +                                (4) 

where ω  is a linear decreasing weight strategy defined as follows: 

max max min
max

( )jM
M

ω ω ω ω= − ⋅ −  (5) 

where minω  and maxω  are the initial and final values of the inertial weight, respectively, jM
 is the 

current iteration number and maxM  is the maximum iteration number.  
Since the inertial weight ω  improves the performance significantly, scholars take it as the 

standard PSO algorithm, which has become the basis of the current research and improvement of 
PSO. The pseudo-code of the standard PSO algorithm is shown in Figure 1. Inspired by this linear 
decreasing ω , some articles have proposed different strategies on inertial weight [28,35].  

1   Initialize the parameters (N, D, Vmin, Vmax, Max_iter, Xmin, Xmax) 
2   Randomly generate N initial positions ( 1,2, , )iX i N= ⋅⋅⋅  of N particles within the maximum range 
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4   Calculate the fitness value of each particle using the objective function f  
5   Set pbest  and gbest  in the swarm 

6 While iter < Max_iter do 
7          Using Equation (5) to update the inertia weight ω  
8          for i =1:N(number of particles) do 

9               Update the velocity iV  of the i th particle using Equation (3) 

10              Update the position iX  of the i th particle using Equation (4)               

11              Calculate the fitness values of the new particle iX  using the objective function f  

12              if iX  is superior to ipbest    

13                     Set iX  to be ipbest   

14               End if  
15               if iX  is superior to gbest   

16                     Set iX  to be gbest    

17               End if 
18          End for i  
19          iter=iter+1 
20   End While 

Figure 1. Pseudo-code of the standard particle swarm optimization (PSO) algorithm. Figure 1. Pseudo-code of the standard particle swarm optimization (PSO) algorithm.
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3. Hybrid Multi-Step Probability Selection Particle Swarm Optimization with Sine Chaotic
Inertial Weight and Symmetric Tangent Chaotic Acceleration Coefficients (MPSPSO-ST)

The PSO algorithm currently has shown great effectiveness on various optimization problems,
but it still has a drawback as lacking diversity in the search process. Due to premature convergence,
the search is prone to stagnate and fall into local optimal solutions [36,37]. Based on the in-depth study
of PSO, this paper proposes three modifications to improve the performance of PSO.

3.1. Hybrid Multi-Step Probability Selection Particle Swarm Optimization (MPSPSO)

According to Equation (3), the particle velocity updated in the PSO algorithm is determined by three
terms: inertia term vt

i , self-cognition component term c1 · r1 · (pbestt
i − xt

i) and social cognitive component
term c2 · r2 · (gbestt

− xt
i). Inspired by human behavior, when humans do things, they sometimes perform

habitually (the velocity update only includes inertia term vt
i , as shown in Equation (6)), sometimes

they sum up their own experience (the velocity update includes inertia term vt
i and self-cognition

component term c1 · r1 · (pbestt
i − xt

i), as shown in Equation (7)), and sometimes they summarize all the
information and then do things (the basic PSO algorithm is this way, as shown in Equation (1)) [38].

Previous studies have shown that the length and direction of vt
i are coupled with pbestt

i and
gbestt, resulting in a slow update of pbestt

i [39]. Gao et al. [38] proposed a variant named PSO-MP to
decompose the single-step velocity update formula in the standard PSO into the three-steps update and
then choose the best one. This method that updating step-by-step first and then selecting the optimal
value to update can achieve decoupling of vt

i , pbestt
i and gbestt, respectively. Thereby, the search ability

of this algorithm is enhanced.
In order to increase the diversity and randomness of the particle population, this paper proposes

a PSO variant using hybrid multi-step probability selection, namely MPSPSO. The main idea of this
variant is to decompose the single-step velocity update formula in the standard PSO into four velocity
update formulas. In the early iterations, we directly select the one with the best fitness value of four
velocity update formulas. While in the later iterations, we probabilistically select one of the four
velocity update formulas using the roulette wheel selection mechanism according to the fitness value.
Finally, the optimal solution is obtained. This algorithm can not only achieve the decoupling of vt

i , pbestt
i

and gbestt but also enhance the randomness and diversity of optimization, thereby effectively avoiding
falling into local optimums, so that it can improve the search accuracy and efficiency. The detailed
introduction about MPSPSO is presented as follows.

1. Calculate the particle velocity and position by Equations (3) and (4), where xt+1
i is the vector

sum with xt
i , ω · v

t
i , c1 · r1 · (pbestt

i − xt
i) and c2 · r2 · (gbestt

− xt
i), as shown in Figure 2.
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As can be seen from Figure 2, in the standard PSO, only xt
i and xt+1

i are used to update the particle
position. xt+1

1 , xt+1
2 and xt+1

3 are used as temporary points only for the generation of xt+1
i . These three

points may be better than others, but they are ignored. Therefore, the velocity update Equation (3) is
divided into four steps in this paper, and three temporary points are iterative objects which can be
selected. The equations are described as follows:

vt+1
1 = ω · vt

i , xt+1
1 = xt

i + vt+1
1 (6)

vt+1
2 = vt+1

1 + c1 · r1 · (pbestt
i − xt

i), xt+1
2 = xt

i + vt+1
2 (7)

vt+1
3 = vt+1

1 + c2 · r2 · (gbestt
− xt

i), xt+1
3 = xt

i + vt+1
3 (8)

vt+1
4 = vt+1

1 + c1 · r1 · (pbestt
i − xt

i) + c2 · r2 · (gbestt
− xt

i), xt+1
4 = xt

i + vt+1
4 (9)

2. If iteration < 0.9× tmax(tmax is the maximum iteration number), choose the position with the
best fitness given by the objective function f (in this paper, we all solve min f (x) problem, so the smaller
f (x) is, the better the fitness is) among the above equations as the final position xt+1

i . The corresponding
velocity is taken as the final velocity vt+1

i .
The process is described as follows:

vt+1
i =


vt+1

1 , i f min
{

f (xt+1
1 ), f (xt+1

2 ), f (xt+1
3 ), f (xt+1

4 )
}
= f (xt+1

1 )

vt+1
2 , i f min

{
f (xt+1

1 ), f (xt+1
2 ), f (xt+1

3 ), f (xt+1
4 )

}
= f (xt+1

2 )

vt+1
3 , i f min

{
f (xt+1

1 ), f (xt+1
2 ), f (xt+1

3 ), f (xt+1
4 )

}
= f (xt+1

3 )

vt+1
4 , otherwise

(10)

xt+1
i =


xt+1

1 , i f min
{

f (xt+1
1 ), f (xt+1

2 ), f (xt+1
3 ), f (xt+1

4 )
}
= f (xt+1

1 )

xt+1
2 i f min

{
f (xt+1

1 ), f (xt+1
2 ), f (xt+1

3 ), f (xt+1
4 )

}
= f (xt+1

2 )

xt+1
3 i f min

{
f (xt+1

1 ), f (xt+1
2 ), f (xt+1

3 ), f (xt+1
4 )

}
= f (xt+1

3 )

xt+1
4 otherwise

(11)

The rationality and effectiveness of this step-by-step process are reflected in the refinement of
the particle search trajectory. Firstly, the particles move by Equation (6) according to the speed and
inertia of the previous step. If the search direction in the previous step is a direction that is closer to the
best solution, then this position may be a better point. On the basis of xt+1

1 , move along the individual
extreme value direction to xt+1

2 by Equation (7) to refine the local search; move to xt+1
3 along the global

extreme value direction by Equation (8) to refine the global search; or comprehensively considering the
individual extreme value and the global extreme value, move to xt+1

4 along the individual extreme
value direction and the global extreme value direction by Equation (9) as the standard PSO. Such a
step-by-step search operation can take the temporary points that were initially ignored as optional
objects and achieve greater use of potential information so that the algorithm has multi-selected
opportunities to find the optimal solution more efficiently.

3. After iterating to 90% of tmax, according to the fitness of the four positions from
Equations (6)–(9), given by the objective function f , we probabilistically select one of the four positions
as the update particle position xt+1

i of this generation using a roulette wheel selection mechanism.
The particle velocity corresponding to this position is taken as the update particle velocity vt+1

i . Roulette
wheel selection [40] is widely used in improving various population-based algorithms such as GA [41]
DE [42] which all achieve satisfactory results. Inspired by this, we propose the above idea.

Roulette wheel selection mechanism, also known as a proportional selection method, the basic
idea of which is that the probability of an individual being selected is proportional to its fitness, that is,
the size of the objective function value. The smaller the objective function value of the particle position
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is, the better the particle fitness is, the higher the probability of being selected is. The specific operations
are as follows:

• Calculate the objective function value f (i = 1, 2, 3, 4) of each of the four particle positions.
• Due to it that the smaller f (x) is, the better the fitness of the position is, so the probability of

being selected should be inversely proportional to the function value of the position. From this,
the probability of each position being selected is calculated as follows:

P(xi) = 1−
f (xi)

4∑
j=1

f (x j)

(12)

• Calculate the cumulative probability of each position:

qi =
i∑

j=1

P(x j) (13)

The cumulative probability diagram is in Figure 3 as follows:

• Randomly generate a uniformly distributed random number r in the interval [0, 1].

• When r satisfies r < q1, select position xt+1
1 ; when r satisfies qk−1 < r ≤ qk, select position xt+1

k .
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After iterating to 90% of tmax, the reason for using the roulette wheel selection mechanism is
that the whole swarm are now close to the global optimum, but the swarm diversity in the later
iterations is poor, and the point with the best fitness in this generation may not always approach the
best solution quickly after iterative calculations, so the roulette wheel selection mechanism is used at
the later stage of the iteration to select the final update point xt+1

i . Possibility of selecting good particle
positions for this generation is high but not absolutely and other particle positions may also be selected,
which makes the choice of search direction more diverse. This operation enriches the swarm diversity
and ensures that the ability to jump out of local extreme value is effectively modified.

Similar to the next iteration, each particle will modify its speed and position within each iteration
until the optimal solution is found or all iterations are terminated. MPSPSO successfully avoids
premature convergence and greatly increases the possibility of finding the optimal solution.

3.2. Sine Chaotic Inertia Weight ω

The inertia weight plays a vital role in the convergence behavior of PSO [34,43]. Chaos is a
nonlinear dynamic phenomenon, which has regularity, randomness and ergodicity. Due to these
characteristics, chaos has become a popular optimization method today. Optimizing the search by
chaos mechanism is superior to stochastic search [44,45]. It has the ability not to repeatedly go through
all states in a certain range, which can meet the needs of ω for different functions to the greatest
extent [46]. The authors of [47] compared 15 classic methods of inertial weight, and the result indicates
that chaotic inertial weight is the best strategy to improve accuracy.
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Previous research has shown that the sine function plays a great role in the adjustment of ω [48,49].
Combining the sine function and chaos mechanism, this paper uses a sine iterator to directly generate
the sequence to achieve the sine chaotic inertial weight.

A sine iterator is a type of chaotic sequence generator. Mathematically, its basic form is as follows:

Xn+1 = ax2
n sin(πxn) (14)

When a = 2.3, X0 = 0.7, its simple form is as follows:

Xn+1 = sin(πxn) (15)

It generates chaotic sequences in (0, 1).
Therefore, this paper proposes the following update form of ω:

ωt+1 = φ× sin(πωt) + τ (16)

The initial value ω1 is an arbitrary number in [0, 1], and φ, τ are constants.
In this paper, we take φ = 0.9, τ = 0. With the progress of the iterative process, ω can traverse

almost all values in the interval of [0.2, 0.9] approximately. The proposal of sine chaotic inertial
weight can enhance the global exploration of the algorithm and strengthen the ability of avoiding
local optimum.

3.3. Symmetric Tangent Chaotic Acceleration Coefficients c1, c2

The cognitive component c1 and social component c2 are very important for the algorithm to find
the optimal solution accurately and efficiently. Usually, the cognitive component and social component
are given equal weight c1 = c2 = 2. With a large cognitive component and a small social component at
the beginning, particles are allowed to move around the search space during the early stages. On the
other hand, a small cognitive component and a large social component allow the particles to converge
to the global optimum in the latter part of the optimization process [50]. Logistic mapping in the
chaos mechanism has attracted much attention owing to better optimization performance, such as
randomness and ergodicity. Based on the above two points, this paper proposes symmetric tangent
chaotic acceleration coefficients.

The formula of Logistic mapping is z = µ× z× (1− z), and chaos performance is best when µ = 4.
This paper firstly proposes the symmetric tangent acceleration coefficient, and then introduces the
chaotic term. The equations of the symmetric tangent acceleration coefficients are as follows:

c1 = −∂×m2
× tan[

π
8
× (1 + m2)] + θ (17)

c2 = −∂× (1−m)2
× tan[

π
8
× (1 + (1−m)2)] + θ (18)

where m = t
tmax

, t is the current number of iterations, tmax is the maximum number of iteration, and ∂,θ
are constants.

Then add chaotic terms to Equations (17) and (18): firstly, take a random number in (0,1),
then generate the Logistic mapping sequence. We propose the symmetric tangent chaotic acceleration
coefficients, which are defined by Equations (19) and (20).

c1 = −∂×m2
× tan[

π
8
× (1 + m2)] + θ+ ρ× z (19)

c2 = −∂× (1−m)2
× tan[

π
8
× (1 + (1−m)2)] + θ+ ρ× z (20)

where ρ is a constant.
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This paper takes ∂ = 0.2, θ = 1.5 and ρ = 0.1. The proposal of the symmetric tangent acceleration
factor enables the algorithm to balance the global search in the early stage of iteration and the local
search in the later stage of iteration better. Meanwhile, the proposal of chaotic terms makes the
acceleration coefficients have chaotic characteristics while maintaining the original change trend.

Summarizing the above description, the pseudo-code of MPSPSO-ST proposed in this paper is
shown in Figure 4:
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Algorithm Population 
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Iteration
 

run 
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Parameter Settings 

Standard 

PSO 

40 500 20 1 2 max2, 0.9 ~ 0.4, 6c c Vω= = = =
 

Basic PSO 40 500 20 ω= = = =1 2 max2, 1, 6c c V

Figure 4. Pseudo-code of the multi-step probability selection particle swarm optimization with sine
chaotic inertial weight and symmetric tangent chaotic acceleration coefficients (MPSPSO-ST) algorithm.

4. Experimental Results and Discussion

In this study, we used 20 well-known multi-dimensional classical benchmark functions, i.e.,
objective function f , to perform a large number of experiments to evaluate the performance of
MPSPSO-ST proposed in this paper. These test functions were adopted by extensive literature [51,52].
We conducted two groups of experiments: in the first group, we compared the search performance of
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MPSPSO-ST with standard PSO, basic PSO, MPSPSO. In the second group, we compared MPSPSO-ST
with three PSO variants (chaos particle swarm optimization (CPSO), particle swarm optimization with
the nonlinear dynamic acceleration coefficients (PSO-NDAC), adaptive inertia weight and acceleration
coefficients PSO (AIWCPSO)) and three well-known similar optimization algorithms (DE, MFO, SCA).

The Appendix A lists 20 classic benchmark functions adopted for this experiment to test the
performance of MPSPSO-ST. These test functions are divided into two types. The first type contains eight
unimodal functions and the second type contains 12 multimodal functions. There are many well-known
functions, like f10(Michalewicz), f11(Griewank), f13(levy) and f19(Zakharov). f10(Michalewicz) has d!
local minima. The parameter m defines the steepness of the valleys and ridges and a larger m leads
to a more difficult search. f11(Griewank) has many widespread local minima, which causes more
difficulties in searching for the global optimum. f13(levy) and f19(Zakharov) are both widely used in
the optimization field because they are classical. Dim, Range and f min represent the space dimensions
of solution, the range of function variation and the minimum value of the function, that is, the optimal
solutions, respectively.

4.1. Comparison of MPSPSO-ST with Standard PSO, Basic PSO and MPSPSO

The parameter settings for MPSPSO-ST, Standard PSO, Basic PSO and MPSPSO are shown in
Table 1. The experimental results obtained by testing the 20 benchmark functions in the Appendix A
are shown in Table 2. The convergence diagrams of the four algorithms are shown in Figures 5–7.
The values in the diagrams are the mean best results of 20 runs of the whole swarm so far.

Table 1. Parameter settings for MPSPSO-ST and Standard PSO, Basic PSO and MPSPSO.

Algorithm Population Size Iteration Run Times Parameter Settings

Standard PSO 40 500 20 c1 = c2 = 2,ω = 0.9 ∼ 0.4, Vmax = 6

Basic PSO 40 500 20 c1 = c2 = 2,ω = 1, Vmax = 6

MPSPSO 40 500 20 c1 = c2 = 2,ω = 0.9 ∼ 0.4, Vmax = 6

MPSPSO-ST 40 500 20

c1 = −∂×m2
× tan[π8 × (1 + m2)] + θ+

ρ× z,c2 = −∂× (1−m)2
× tan[π8 × (1 +

(1−m)2)] + θ+ ρ× z,ωt+1 =
φ× sin(πωt) + τ, Vmax = 6

Table 2. Experimental results for MPSPSO-ST, Standard PSO and Basic PSO. MPSPSO on 20 classical
test functions.

Function Algorithm The Best The Worst Mean S.d.

f1

Standard PSO 4.5678 × 10−4 2.1867 × 10−2 5.0366 × 10−3 2.0787 × 10−2

Basic PSO 9.0029 × 101 1.7626 × 102 1.3408 × 102 8.0903 × 101

MPSPSO 1.2001 × 10−8 9.9103 × 10−7 2.6957 × 10−7 1.1904 × 10−6

MPSPSO-ST 5.6834 × 10−16 1.9825 × 10−13 2.0811 × 10−14 1.9440 × 10−13

f2

Standard PSO 0.1209 0.7743 0.2986 0.6429
Basic PSO 56.7585 142.5399 102.9728 104.4540
MPSPSO 0.0306 0.1479 0.0640 0.1217

MPSPSO-ST 0.0191 0.0732 0.0396 0.0644

f3

Standard PSO 4.3416 × 101 1.1851 × 102 7.6565 × 101 9.3955 × 101

Basic PSO 2.7751 × 102 8.5694 × 102 4.8829 × 102 5.5224 × 102

MPSPSO 1.8069 × 100 1.4074 × 101 5.7546 × 100 1.5430 × 101

MPSPSO-ST 7.9038 × 10−3 2.3292 × 10−1 7.0004 × 10−2 2.5658 × 10−1

f4

Standard PSO 1.9400 × 10−7 4.0724 × 10−3 4.4258 × 10−4 4.1605 × 10−3

Basic PSO 7.3786 × 10−2 1.2261 × 100 6.5420 × 10−1 1.3869 × 100

MPSPSO 4.6486 × 10−21 1.7877 × 10−16 1.2995 × 10−17 1.7277 × 10−16

MPSPSO-ST 1.8112 × 10−49 2.6982 × 10−40 1.9660 × 10−41 2.6120 × 10−40
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Table 2. Cont.

Function Algorithm The Best The Worst Mean S.d.

f5

Standard PSO 1.02591 12.0564 4.08932 12.80900
Basic PSO 5.2064 × 104 1.2287 × 105 8.5260 × 104 9.1677 × 104

MPSPSO 0.66672 3.14810 1.26960 3.71450
MPSPSO-ST 0.66667 2.03490 0.79497 1.70870

f6

Standard PSO 2.5432 × 10−3 2.4399 × 10−2 7.9220 × 10−3 2.4535 × 10−2

Basic PSO 8.2531 × 101 1.6702 × 102 1.3159 × 102 8.8401 × 101

MPSPSO 1.5414 × 10−8 1.0729 × 10−6 2.3913 × 10−7 1.1474 × 10−6

MPSPSO-ST 6.1306 × 10−16 5.1809 × 10−13 5.0002 × 10−14 5.2461 × 10−13

f7

Standard PSO 3.1183 × 10−2 2.5205 × 10−1 1.0527 × 10−1 2.7090 × 10−1

Basic PSO 1.3802 × 103 2.3578 × 103 1.8650 × 103 1.2075 × 103

MPSPSO 5.7551 × 10−7 7.9424 × 10−5 8.8537 × 10−6 7.6769 × 10−5

MPSPSO-ST 5.7456 × 10−16 7.9810 × 10−14 2.7045 × 10−14 1.0692 × 10−13

f8

Standard PSO 4.7811 × 10−4 4.7318 × 10−2 7.0241 × 10−3 4.8574 × 10−2

Basic PSO 6.0663 × 101 1.3860 × 102 1.0412 × 102 1.0270 × 102

MPSPSO 2.9684 × 10−13 3.2834 × 10−10 5.1454 × 10−11 3.7774 × 10−10

MPSPSO-ST 7.5201 × 10−31 5.7745 × 10−26 7.5066 × 10−27 6.5486 × 10−26

f9

Standard PSO 0.29987 0.49987 0.43487 0.25593
Basic PSO 1.10070 1.5999 1.34680 0.57279
MPSPSO 0.29987 0.49987 0.42487 0.27839

MPSPSO-ST 0.29987 0.49987 0.36518 0.25683

f10

Standard PSO −1.7207 × 10−9
−9.1788 × 10−10

−1.2473 × 10−9 9.7966 × 10−10

Basic PSO −9.3338 × 10−10
−6.8522 × 10−10

−8.0715 × 10−10 3.4338 × 10−10

MPSPSO −2.3176 × 10−9
−1.1251 × 10−9

−1.8146 × 10−9 1.4152 × 10−9

MPSPSO-ST −3.0052 × 10−9 −2.4403 × 10−9 −2.7811 × 10−9 7.4879 × 10−10

f11

Standard PSO 1.4317 × 10−5 3.2392 × 10−2 9.4530 × 10−3 3.6992 × 10−2

Basic PSO 1.0250 × 100 1.0392 × 100 1.0335 × 100 1.9501 × 10−2

MPSPSO 2.0319 × 10−8 3.6910 × 10−2 1.0222 × 10−2 4.3936 × 10−2

MPSPSO-ST 3.9968 × 10−15 8.0685 × 10−2 2.0720 × 10−2 1.1602 × 10−1

f12

Standard PSO 1.1716 × 10−5 1.0372 × 10−1 5.2801 × 10−3 1.0100 × 10−1

Basic PSO 4.1217 × 100 6.0335 × 100 5.2257 × 100 2.4996 × 100

MPSPSO 1.4159 × 10−9 1.0367 × 10−1 1.5550 × 10−2 1.6555 × 10−1

MPSPSO-ST 9.1102 × 10−17 3.9616 × 100 8.3068 × 10−1 4.6458 × 100

f13

Standard PSO 3.4293 6.0435 4.5710 3.6773
Basic PSO 124.6619 182.6454 150.8625 74.4685
MPSPSO 2.3077 5.9331 3.7067 3.5467

MPSPSO-ST 2.4172 11.536 5.3201 11.0171

f14

Standard PSO 7.409 × 10−6 4.3215 × 10−4 8.4032 × 10−5 4.1803 × 10−4

Basic PSO 1.6260 × 100 4.1097 × 100 2.4549 × 100 2.8544 × 100

MPSPSO 6.8133 × 10−11 2.3492 × 10−8 2.4795 × 10−9 2.4440 × 10−8

MPSPSO-ST 7.6029 × 10−17 2.8983 × 10−3 1.6939 × 10−4 2.8349 × 10−3

f15

Standard PSO 2.5207 × 10−2 2.0130 × 10−1 7.7555 × 10−2 2.3124 × 10−1

Basic PSO 2.7387 × 101 3.6274 × 101 3.1328 × 101 1.0927 × 101

MPSPSO 4.5570 × 10−5 4.0095 × 10−3 1.1036 × 10−3 4.9777 × 10−3

MPSPSO-ST 6.5547 × 10−8 3.0083 × 10−4 3.6657 × 10−5 3.3579 × 10−4

f16

Standard PSO 3.0000 3.0000 3.0000 6.7349 × 10−15

Basic PSO 3.0099 3.4032 3.1322 5.5096 × 10−1

MPSPSO 3.0000 3.0000 3.0000 1.9357 × 10−15

MPSPSO-ST 3.0000 3.0000 3.0000 0

f17

Standard PSO 0.9980 7.8740 2.6270 9.4631
Basic PSO 0.9980 7.8740 2.0372 6.5904
MPSPSO 0.9980 2.9821 1.4449 2.9697

MPSPSO-ST 0.9980 0.9980 0.9980 0
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Table 2. Cont.

Function Algorithm The Best The Worst Mean S.d.

f18

Standard PSO 4.3426 × 10−4 1.1096 × 10−3 8.6577 × 10−4 7.7543 × 10−4

Basic PSO 5.8557 × 10−4 1.9988 × 10−3 1.2394 × 10−3 1.6428 × 10−3

MPSPSO 3.0749 × 10−4 1.0349 × 10−3 6.5378 × 10−4 1.4993 × 10−3

MPSPSO-ST 3.0749 × 10−4 1.0383 × 10−3 4.0910 × 10−4 1.0838 × 10−3

f19

Standard PSO 1.8802 × 10−17 5.3438 × 10−15 9.9794 × 10−16 7.0982 × 10−15

Basic PSO 1.6320 × 100 4.5516 × 100 2.8228 × 100 3.6775 × 100

MPSPSO 8.1831 × 10−38 3.5528 × 10−33 2.2073 × 10−34 3.4617 × 10−33

MPSPSO-ST 3.2993 × 10−58 2.8784 × 10−55 5.5092 × 10−56 3.2355 × 10−55

f20

Standard PSO −3.3220 −3.2031 −3.2744 0.2605
Basic PSO −3.1587 −2.5910 −2.9131 0.8005
MPSPSO −3.3220 −3.2031 −3.2566 0.2645

MPSPSO-ST −3.3220 −3.2031 −3.2982 0.2126

Figure 5 clearly shows that compared to the other three algorithms, MPSPSO-ST has very
prominent advantages, which offers the fastest convergence speed and the strongest optimization
accuracy. From Figure 6a,d,e,f, we observe that for multimodal functions f10, f15, f17, f18, MPSPSO-ST
owns faster convergence speed and better optimization performance compared with the other three
algorithms, especially these advantages are more outstanding for f10, f15, f17. However, for multimodal
functions f11, f13 in Figure 6b,c, the performance of MPSPSO-ST is not as good as that of MPSPSO
and Standard PSO. Nevertheless, MPSPSO-ST can maintain a faster convergence rate when the final
optimization results of MPSPSO-ST and MPSPSO, Standard PSO are quite close. As seen from Figure 7,
the convergence speed and global search capability of MPSPSO-ST are the most competitive for
multimodal functions f19, f20.

The information in Table 2 can reflect the above conclusions more specifically and accurately.
The indicators in Table 2 are the best values (the best), the worst value (the worst), mean value (mean),
standard deviation (S.D.) of MPSPSO-ST and Standard PSO and Basic PSO, MPSPSO in 20 independent
running experiments. Among all unimodal functions f1 ∼ f8 and multimodal functions f9, f10, f15,
f16, f17, f18, f19 and f20, MPSPSO-ST overtakes all other methods in terms of convergence rate and
optimization accuracy. Especially for multimodal functions f16 and f17, MPSPSO-ST can all reach the
theoretical optimal value in a few iterations and the S.D. of MPSPSO-ST can reach 0. It means that
MPSPSO-ST can achieve theoretical optimal value in each of 20 independent experiments, which shows
MPSPSO-ST has steadier search ability than the other three algorithms during the search process.
For multimodal functions f11, f12 and f14, the optimization performance of MPSPSO-ST is not optimal,
but it is the best at The best, indicating that MPSPSO-ST has obtained the best optimization results in
the optimization of these test functions but the overall has not been maintained. Meanwhile, it can be
seen that the standard deviation of MPSPSO-ST is smaller than the other three algorithms in a majority
of test functions, illustrating that it has stronger robustness and stability.

As seen from Table 2, Figures 5–7, we can conclude that the proposed MPSPSO-ST owns better
optimization capability compared with Standard PSO, Basic PSO and MPSPSO, which indicates that
MPSPSO-ST has excellent ability in solving numerical optimization problems.
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4.2. Comparison of MPSPSO-ST with CPSO, PSO-NDAC, AIWCPSO, DE, MFO and SCA

In this section, we have designed comparisons of MPSPSO-ST with several classic improved PSO
variants (chaos particle swarm optimization (CPSO) [53] particle swarm optimization with the nonlinear
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dynamic acceleration coefficients (PSO-NDAC) [32] AIWCPSO [54]) and other well-known classic
optimization algorithms (differential evolution algorithm (DE), moth-flame optimization algorithm
(MFO) and sine cosine algorithm (SCA)). CPSO realizes chaotic searching on the current global
best individual using chaos mechanism. PSO-NDAC proposes the nonlinear dynamic acceleration
coefficients to add to PSO. AIWCPSO designs an inertia weight strategy that the adaptive inertia
weight is adjusted according to the updated particles of the previous generation. DE is a group-based
adaptive global optimization algorithm, which belongs to an evolutionary algorithm. MFO is a swarm
intelligence optimization algorithm, the main inspiration of which is the navigation method of moths
in nature called transverse orientation. SCA creates multiple initial random candidate solutions and
requires them to fluctuate outwards or towards the best solution based on sine and cosine functions.
The parameter settings for each algorithm are shown in Table 3.

Table 3. Parameter settings for MPSPSO-ST and particle swarm optimization with the nonlinear
dynamic acceleration coefficients (PSO-NDAC), chaos particle swarm optimization (CPSO), AIWCPSO,
moth-flame optimization (MFO), sine cosine algorithm (SCA) and differential evolution (DE).

Algorithm Population Size Iteration Run Times Parameter Settings

PSO-NDAC 40 500 20
c1 = −2×m2 + 2.5, c2 = 0.5× (1−m)2 + 2.5×m

(m = t
tmax

),ω = 0.9 ∼ 0.4, Vmax = 6

CPSO 40 500 20 c1 = c2 = 2,ω = 0.9 ∼ 0.4,µ = 4, Vmax = 6

AIWCPSO 40 500 20 c1 = c2 = 2,ω = 0.9 ∼ 0.4, Vmax = 6

MFO 40 500 20 t is random number in the range[−2, 1]

SCA 40 500 20
r1 = 4 ∼ 0, r2 is a random number in the range [0,

2π], r3 is a random number in the range [0, 2], r4 is a
random number in the range [0, 1]

DE 40 500 20 F=0.3, CR=0.5

MPSPSO-ST 40 500 20
c1 = −∂×m2

× tan[π8 × (1 + m2)] + θ+ ρ× z,c2 =

−∂× (1−m)2
× tan[π8 × (1 + (1−m)2)] + θ+ ρ×

z,ωt+1 = φ× sin(πωt) + τ, Vmax = 6

The experimental results obtained by the test functions listed in the Appendix A are shown in
Table 4. The convergence diagrams of the seven algorithms are shown in Figures 8–10, and the values
in the diagrams are the mean best results in 20 runs in the whole swarm so far.

As seen from Figure 8, MPSPSO-ST has an undeniable advantage in terms of convergence rate
and optimization accuracy for unimodal functions f1, f3, f4, f6 compared with the other six algorithms.
Figure 9a–c,f show that MPSPSO-ST also has the best convergence rate and solution accuracy for
multimodal functions f7, f8, f10, f15. Through Figure 9d,e, we find that the search performance of
MPSPSO-ST is not optimal for multimodal functions f11, f14. For multimodal function f11, MPSPSO-ST
has the best performance except for AIWCPSO. Furthermore, in the case where the optimization
effect of MPSPSO-ST is very close to the optimization effect of AIWCPSO, MPSPSO-ST has a faster
convergence speed to the global optimal solution than AIWCPSO. For multimodal functions f17, f18,
f19, f20 in Figure 10, MPSPSO-ST outperforms the other six methods.

As shown in Table 4, for multimodal functions f11 and f12, MPSPSO-ST is not the best but The
best it can find is the greatest compared to other algorithms, which shows that MPSPSO -ST has the
ability to find the best results in 20 independent experiments but it has not been maintained in general.
Besides, for multimodal functions f16, f17, the theoretical optimal value can be successfully found each
time by MPSPSO-ST in 20 independent experiments, which indicates that the search performance
of MPSPSO-ST is very stable. Therefore, we can see that MPSPSO-ST has prominent advantages in
robustness and stability.
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Table 4. Experimental results for MPSPSO-ST and PSO-NDAC, CPSO, AIWCPSO, MFO, SCA and DE
on 20 classical test functions.

Function Algorithm The Best The Worst Mean S.D.

f1

PSO-NDAC 5.1300 × 10−8 3.3867 × 10−5 2.6932 × 10−6 3.2888 × 10−5

CPSO 2.5381 × 10−1 3.3147 × 101 7.9537 × 100 4.6559 × 101

AIWCPSO 1.6492 × 10−6 2.8529 × 10−5 8.0015 × 10−6 2.8947 × 10−5

MFO 5.3151 × 10−1 1.0000 × 104 5.0147 × 102 9.7458 × 103

SCA 1.2638 × 10−15 2.2184 × 102 1.1287 × 101 2.1604 × 102

DE 6.1421 × 10−3 8.6630 × 101 1.3950 × 101 9.8238 × 101

MPSPSO-ST 8.7871 × 10−16 2.5463 × 10−13 8.1821 × 10−14 3.3863 × 10−13

f2

PSO-NDAC 0.02018 0.09354 0.05649 0.08375
CPSO 0.05965 2.81610 1.25650 3.50140

AIWCPSO 0.03554 0.08707 0.05680 0.05934
MFO 0.05698 29.70930 3.39012 31.62590
SCA 0.00815 0.31364 0.06917 0.37656
DE 0.03722 0.20296 0.10343 0.19898

MPSPSO-ST 0.01611 0.05752 0.03274 0.04851

f3

PSO-NDAC 8.8027 × 100 8.9787 × 101 2.7801 × 101 8.7341 × 101

CPSO 2.4701 × 101 1.0485 × 102 6.0563 × 101 9.0587 × 101

AIWCPSO 1.9160 × 101 1.1344 × 102 4.5443 × 101 9.0026 × 101

MFO 1.7315 × 103 5.3692 × 104 1.9764 × 104 5.0273 × 104

SCA 2.1712 × 100 1.2644 × 104 1.9731 × 103 1.8014 × 104

DE 5.8248 × 103 2.5593 × 104 1.2039 × 104 2.2101 × 104

MPSPSO-ST 4.1427 × 10−2 5.9152 × 10−1 2.1145 × 10−1 7.7382 × 10−1

f4

PSO-NDAC 4.0015 × 10−25 2.6450 × 10−19 3.5505 × 10−20 3.5317 × 10−19

CPSO 2.5551 × 10−4 8.0566 × 10−3 2.2690 × 10−3 8.7752 × 10−3

AIWCPSO 3.0713 × 10−18 3.1036 × 10−12 2.2484 × 10−13 3.1787 × 10−12

MFO 8.7526 × 10−14 2.4125 × 10−7 1.2382 × 10−8 2.3484 × 10−7

SCA 1.7091 × 10−56 1.3950 × 10−3 6.9753 × 10−5 1.3597 × 10−3

DE 1.0221 × 10−18 3.9932 × 10−6 2.0004 × 10−7 3.8918 × 10−6

MPSPSO-ST 1.8781 × 10−49 6.6562 × 10−41 1.1225 × 10−41 9.4197 × 10−41

f5

PSO-NDAC 6.6668 × 10−1 6.5562 × 100 1.6663 × 100 7.0782 × 100

CPSO 1.1582 × 100 3.4957 × 104 1.0897 × 104 5.4315 × 104

AIWCPSO 6.6749 × 10−1 4.7360 × 100 1.3134 × 100 5.3422 × 100

MFO 1.9549 × 100 7.2585 × 104 1.0531 × 104 1.1194 × 105

SCA 6.6713 × 10−1 7.4345 × 101 4.5179 × 100 7.1707 × 101

DE 3.0014 × 100 1.5603 × 103 1.3819 × 102 1.6222 × 103

MPSPSO-ST 6.6667 × 10−1 3.5021 × 100 1.0923 × 100 3.7675 × 100

f6

PSO-NDAC 1.7100 × 10−8 1.4269 × 10−5 2.1761 × 10−6 1.4714 × 10−5

CPSO 1.4766 × 100 3.7322 × 101 1.1397 × 101 3.7236 × 101

AIWCPSO 1.2828 × 10−6 1.7912 × 10−5 6.8441 × 10−6 2.1667 × 10−5

MFO 5.0435 × 10−1 9.9013 × 103 1.0440 × 103 1.3243 × 104

SCA 4.3620 × 100 1.4545 × 101 5.5499 × 100 9.8103 × 100

DE 6.2442 × 10−10 1.5620 × 102 2.3732 × 101 1.9729 × 102

MPSPSO-ST 1.0678 × 10−15 4.8348 × 10−13 7.7464 × 10−14 5.0284 × 10−13

f7

PSO-NDAC 4.4619 × 10−7 6.0106 × 10−5 8.5332 × 10−6 6.1709 × 10−5

CPSO 5.7821 × 101 1.1138 × 103 5.0476 × 102 1.3492 × 103

AIWCPSO 3.5964 × 10−6 7.4185 × 10−5 2.1497 × 10−5 8.3628 × 10−5

MFO 3.0001 × 10−2 1.5001 × 103 4.5025 × 102 2.0993 × 103

SCA 1.8083 × 10−22 1.9105 × 101 1.0553 × 100 1.8618 × 101

DE 7.3789 × 10−5 1.4108 × 101 1.3408 × 100 1.4138 × 101

MPSPSO-ST 4.6508 × 10−16 1.1855 × 10−12 1.8800 × 10−14 1.5397 × 10−12

f8

PSO-NDAC 7.8413 × 10−14 1.4895 × 10−9 1.4322 × 10−10 1.6302 × 10−9

CPSO 1.2651 × 10−2 2.7074 × 100 8.0086 × 10−1 3.2157 × 100

AIWCPSO 6.6641 × 10−11 1.6291 × 10−7 1.1648 × 10−8 1.6120 × 10−7

MFO 6.5346 × 10−6 1.3422 × 101 1.3437 × 100 1.3419 × 101

SCA 6.8560 × 10−28 1.4863 × 100 7.8368 × 10−2 1.4465 × 100

DE 2.9936 × 10−7 3.3894 × 10−2 2.9902 × 10−3 3.2996 × 10−2

MPSPSO-ST 2.2820 × 10−31 2.5041 × 10−26 3.3096 × 10−27 2.8730 × 10−26
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Table 4. Cont.

Function Algorithm The Best The Worst Mean S.D.

f9

PSO-NDAC 0.29987 0.59987 0.41987 0.36332
CPSO 0.20245 0.89988 0.59128 0.87943

AIWCPSO 0.19987 0.59987 0.41994 0.38963
MFO 1.29987 12.19990 5.56991 17.25210
SCA 0.09988 4.55470 0.61124 4.18660
DE 0.29987 1.39990 0.50236 1.23470

MPSPSO-ST 0.29987 0.49987 0.38987 0.27928

f10

PSO-NDAC −2.9410 × 10−9
−1.8034 × 10−9

−2.3857 × 10−9 1.1856 × 10−9

CPSO −1.1181 × 10−9
−8.6693 × 10−10

−9.9583 × 10−10 2.7155 × 10−10

AIWCPSO −2.8340 × 10−9
−1.6520 × 10−9

−2.4220 × 10−9 1.1758 × 10−9

MFO −2.6658 × 10−9
−2.0384 × 10−9

−2.3715 × 10−9 6.6030 × 10−10

SCA −7.1394 × 10−10
−1.1393 × 10−10

−2.6959 × 10−10 7.6044 × 10−10

DE −2.1077 × 10−9
−1.6630 × 10−9

−1.8151 × 10−9 4.4156 × 10−10

MPSPSO-ST −3.0193 × 10−9 −2.3895 × 10−9 −2.7955 × 10−9 6.9722 × 10−10

f11

PSO-NDAC 1.8235 × 10−8 1.1349 × 100 5.8798 × 10−1 2.1714 × 100

CPSO 1.2241 × 10−2 7.0711 × 10−1 2.4554 × 10−1 1.0575 × 100

AIWCPSO 4.8976 × 10−6 2.7095 × 10−2 8.7549 × 10−3 3.7409 × 10−2

MFO 5.0123 × 10−1 9.1002 × 101 9.9449 × 100 1.2071 × 102

SCA 7.8826 × 10−15 2.5680 × 100 4.5262 × 10−1 2.7232 × 100

DE 9.1420 × 10−4 2.0907 × 100 6.3608 × 10−1 2.9071 × 100

MPSPSO-ST 6.6613 × 10−16 9.3347 × 10−2 1.9044 × 10−2 9.7708 × 10−2

f12

PSO-NDAC 5.7978 × 10−11 1.0370 × 10−1 1.0369 × 10−2 1.3911 × 10−1

CPSO 2.9995 × 10−1 2.0577 × 100 7.9385 × 10−1 2.0733 × 100

AIWCPSO 5.5656 × 10−8 3.1096 × 10−1 5.1833 × 10−2 3.7374 × 10−1

MFO 2.0323 × 100 1.4052 × 101 7.0648 × 100 1.6366 × 101

SCA 5.4712 × 10−1 2.0995 × 101 1.8558 × 100 1.9818 × 101

DE 1.4196 × 10−1 3.7376 × 104 1.8701 × 103 3.6428 × 104

MPSPSO-ST 6.2512 × 10−17 3.9495 × 100 1.1213 × 100 5.1966 × 100

f13

PSO-NDAC 2.3083 5.7135 3.5316 3.5264
CPSO 10.3682 56.6080 24.7796 48.5283

AIWCPSO 1.6613 4.6190 3.0787 4.1172
MFO 2.8600 56.0777 18.1767 66.0427
SCA 26.0094 34.1472 29.7011 10.6788
DE 0.0038 0.8927 0.4323 1.0218

MPSPSO-ST 2.4172 8.6693 5.3316 9.3605

f14

PSO-NDAC 1.1023 × 10−9 2.4166 × 10−6 2.7192 × 10−7 2.7198 × 10−6

CPSO 3.6970 × 10−2 1.1233 × 100 3.4541 × 10−1 1.1816 × 100

AIWCPSO 2.6544 × 10−8 2.3484 × 10−6 4.0181 × 10−7 2.6397 × 10−6

MFO 6.7555 × 10−1 1.1573 × 102 2.4571 × 101 1.2484 × 102

SCA 8.2348 × 10−24 5.5803 × 10−2 3.0040 × 10−3 5.4329 × 10−2

DE 1.7097 × 10−4 6.8415 × 10−1 5.6675 × 10−2 6.5169 × 10−1

MPSPSO-ST 1.7084 × 10−17 1.1430 × 10−4 1.1812 × 10−5 1.4598 × 10−4

f15

PSO-NDAC 5.6249 × 10−4 3.7831 × 10−1 2.7575 × 10−2 3.6192 × 10−1

CPSO 2.9421 × 100 1.7870 × 101 1.0966 × 101 2.0972 × 101

AIWCPSO 3.3407 × 10−4 3.0759 × 10−3 8.7949 × 10−4 3.3632 × 10−3

MFO 1.9292 × 10−2 2.2203 × 101 6.5223 × 100 2.8871 × 101

SCA 4.9150 × 10−5 7.1893 × 10−1 3.7656 × 10−2 6.9966 × 10−1

DE 5.4837 × 10−7 3.3238 × 10−2 4.0703 × 10−3 3.2331 × 10−2

MPSPSO-ST 1.0274 × 10−8 9.8253 × 10−4 1.7602 × 10−4 1.4203 × 10−3

f16

PSO-NDAC 3.0000 3.0000 3.0000 1.8841 × 10−15

CPSO 3.0008 3.4160 3.0888 5.3477 × 10−1

AIWCPSO 3.0000 3.0000 3.0000 1.9357 × 10−15

MFO 3.0000 3.0000 3.0000 8.2725 × 10−15

SCA 3.0000 3.0010 3.0002 1.0726 × 10−3

DE 3.0000 3.0000 3.0000 1.8310 × 10−15

MPSPSO-ST 3.0000 3.0000 3.0000 0
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Table 4. Cont.

Function Algorithm The Best The Worst Mean S.D.

f17

PSO-NDAC 0.99800 1.99200 1.09740 1.33360
CPSO 4.14576 28.82710 13.89500 20.24470

AIWCPSO 0.99800 5.92880 1.78910 6.63320
MFO 0.99800 5.92880 1.59210 5.30030
SCA 0.99801 2.98210 1.09930 1.93180
DE 0.99801 10.76320 2.08246 11.49000

MPSPSO-ST 0.99800 0.99800 0.99800 0

f18

PSO-NDAC 3.0749 × 10−4 1.0028 × 10−3 5.9124 × 10−4 1.1285 × 10−3

CPSO 6.6030 × 10−4 4.0282 × 10−2 6.4056 × 10−3 5.0951 × 10−2

AIWCPSO 3.0749 × 10−4 1.5941 × 10−3 7.4898 × 10−4 1.5257 × 10−3

MFO 3.7221 × 10−4 1.6554 × 10−3 9.5160 × 10−4 1.7842 × 10−3

SCA 8.1546 × 10−4 1.6696 × 10−3 1.3903 × 10−3 9.2161 × 10−4

DE 3.1525 × 10−4 4.6017 × 10−3 1.1767 × 10−3 3.9121 × 10−3

MPSPSO-ST 3.0749 × 10−4 1.0371 × 10−3 3.8036 × 10−4 9.7776 × 10−4

f19

PSO-NDAC 1.5069 × 10−33 7.4158 × 10−30 6.4473 × 10−31 7.2887 × 10−30

CPSO 2.1384 × 10−2 2.2297 × 101 5.7052 × 100 3.8606 × 101

AIWCPSO 2.2815 × 10−30 1.4904 × 10−27 2.6907 × 10−28 1.8522 × 10−27

MFO 3.3701 × 10−23 1.3478 × 10−19 3.2070 × 10−20 2.0313 × 10−19

SCA 3.3833 × 10−48 5.0261 × 10−12 2.5131 × 10−13 4.8989 × 10−12

DE 8.7979 × 10−27 8.2996 × 10−2 5.9547 × 10−3 8.4550 × 10−2

MPSPSO-ST 3.3480 × 10−58 4.6387 × 10−55 3.2719 × 10−56 4.4551 × 10−55

f20

PSO-NDAC −3.3220 −3.2031 −3.2804 0.2536
CPSO −3.2242 −2.6097 −3.0177 0.6943

AIWCPSO −3.3220 −3.2031 −3.2744 0.2605
MFO −3.3220 −3.1376 −3.2351 0.2619
SCA −3.0134 −2.9619 −2.9892 0.0738
DE −3.3220 −3.2030 −3.2799 0.2521

MPSPSO-ST −3.3220 −3.2031 −3.2982 0.2127

Combining Table 4 and Figures 8–10, among the 20 classical benchmark functions f1 ∼ f20,
referring to two indicators, mean (mean) and standard deviation (S.D.) in Table 4, MPSPSO-ST is
significantly superior to the other six algorithms in searching better global optimal value for these 16
test functions f1 ∼ f10, f15 ∼ f20. In addition, although the final optimization result of MPSPSO-ST
is inferior to AIWCPSO for multimodal function f11, it is extremely close to AIWCPSO in terms of
optimization effect and has the fastest convergence speed, and its convergence accuracy is better than
the five other algorithms except for AIWCPSO, so MPSPSO-ST is used as the most efficient optimization
algorithm. For multimodal functions f11, f14, AIWCPSO shows the best performance. For multimodal
function f12, PSO-NDAC has the best performance. The performance of AIWCPSO and PSO-NDAC is
similar in other test functions, second only to MPSPSO-ST, so AIWCPSO and PSO-NDAC are tied as
the second most effective optimization algorithm. DE is listed as the third most effective algorithm,
achieving the best solution on multimodal function f13. Although SCA has not got the best solution in
the optimization of any test function, from the indicator The best in Table 4, SCA has found better
optimal values than other algorithms in 20 independent experiments for unimodal function f7 and
multimodal function f14, but the lack of maintenance leads to a general mean. So SCA is listed as the
fourth most influential optimization algorithm. For CPSO and MFO, they are unable to find a better
global optimal solution than all other algorithms in all test functions.
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To sum up, it can be concluded that MPSPSO-ST offers superior overall performance among all
seven algorithms, followed by AIWCPSO and PSO- NDAC, then DE, then SCA, and finally CPSO
and MFO.

In general, each category used to assess a specified behavior in the optimization algorithm.
The unimodal functions are used to assess the convergence rate of the algorithm since they contain
a single extreme solution in the search domain ( f1 ∼ f8). Meanwhile, the multimodal functions are
used to evaluate the ability of the algorithm to avoid the local point and reach to global solution
since they contain more than an extreme solution ( f9 ∼ f20) 52In the above two experiment sections,
among 20 test functions applied in this paper, MPSPSO-ST is significantly superior to other comparison
algorithms for all unimodal functions and most multimodal functions, which reflects that MPSPSO-ST
has an excellent convergence speed and the ability to get rid of local extreme values.
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Figure 8. The convergence curves of seven algorithms for the functions: (a) f1; (b) f3; (c) f4; (d) f6.
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Figure 9. The convergence curves of seven algorithms for the functions: (a) f7; (b) f8; (c) f10; (d) f11; (e)
f14; (f) f15.
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5. Conclusions

In this paper, we propose the MPSPSO-ST algorithm, which can facilitate the algorithm performance
of the traditional PSO. Firstly, we propose a hybrid multi-step probability selection update mechanism,
i.e., the MPSPSO algorithm. Secondly, based on the MPSPSO algorithm, in order to achieve a good
balance between exploration and exploitation to optimize the performance of the algorithm, we design
the sine chaotic inertial weight and symmetric tangent chaotic acceleration coefficients, which are
integrated into the MPSPSO-ST algorithm. Finally, to appraise the effectiveness of the MPSPSO-ST
algorithm, we conduct extensive experiments with 20 classic benchmark functions and the experiments
consisted of two groups. The first group of experiments is the comparisons of MPSPSO-ST with the
Standard PSO, Basic PSO and MPSPSO. The experimental results show that the hybrid multi-step
probability selection update mechanism proposed in this paper is very effective. The sine chaotic
inertial weight and the symmetric tangent chaotic acceleration coefficients proposed on this basis
can effectively maintain swarm diversity in the search process, which enhances the performance of
MPSPSO-ST significantly. The second group of experiments is the comparisons of the MPSPSO-ST
algorithm with three classical improved PSO variants (CPSO, PSO-NDAC, AIWCPSO) and three
well-known classic optimization algorithms (DE, MFO, SCA). The experimental results show that
the MPSPSO-ST algorithm surpasses all other six algorithms obviously on the majority of the classic
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benchmark functions, with faster convergence speed, higher optimization accuracy, and greater stability
robustness, which is successful in solving numerical optimization tasks. MPSPSO-ST has the basic
characteristics of PSO, simple, easy to realize and other advantages while taking the search accuracy
and search efficiency into account. It can further avoid premature convergence to a certain extent.
Besides, MPSPSO-ST does not introduce any new parameters, making it more versatile and easier to
operate and realize. Indeed, the proposed modification implies increasing complexity of the algorithm,
but it is worthwhile in order to solve complex numerical optimization problems more efficiently.

Therefore, the MPSPSO-ST algorithm proposed in this paper is an excellent choice for solving
complex numerical optimization problems. In the future, we will further develop the strategies of
parameter tuning and study the application of the MPSPSO-ST algorithm in practical problems.
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Appendix A

Table A1. The 20 multi-dimensional classical benchmark functions are given below.

ID Test Function Dim Range f min Type

f1 f (x) =
n∑

i=1
x2

i 30 [−100, 100] 0 Unimodal

f2 f (x) =
n∑

i=1
ix4

i + random[0, 1] 30 [−1.28, 1.28] 0 Unimodal

f3 f (x) =
n∑

i=1
(

i∑
j=1

x j)
2

30 [−100, 100] 0 Unimodal

f4 f (x) =
n∑

i=1
|xi|

i+1 30 [−1, 1] 0 Unimodal

f5 f (x) = (x1 − 1)2 +
n∑

i=2
i(2x2

i − xi−1)
2

30 [−10, 10] 0 Unimodal

f6 f (x) =
n∑

i=1
([xi + 0.5])2 30 [−100, 100] 0 Unimodal

f7 f (x) =
n∑

i=1
ix2

i 30 [−10, 10] 0 Unimodal

f8 f (x) =
n∑

i=1
ix4

i 30 [−1.28, 1.28] 0 Unimodal

f9 f (x) = 1− cos(2π

√
n∑

i=1
x2

i ) + 0.1

√
n∑

i=1
x2

i 30 [−100, 100] 0 Multimodal

f10 f (x) = −
n∑

i=1
sin(xi) · (sin(

ix2
i
π ))

2m
, m = 10 30 [0, π] −4.687 Multimodal

f11 f (x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
) + 1 30 [−600, 600] 0 Multimodal

f12

f (x) = π
n

{
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2 [1 +

10 sin2(πyi+1)] + (yn − 1)2
}
+

n∑
i=1

u(xi, 10, 100, 4), yi =

1 + xi+1
4 u(xi, a, k, m) =


k(xi − a)m, xi > a

0,−a ≤ xi ≤ a
k(−xi − a)m, xi < −a

30 [−50, 50] 0 Multimodal

f13
f (x) = 0.1 sin2(3πx1) +

n−1∑
i=1

(xi − 1)2+sin2(3πxi+1) +

(xn − 1)2(1 + sin2(3πxn))

30 [−5, 5] 0 Multimodal

f14 f (x) =
n∑

i=1
(106)

i−1
n−1 x2

i 30 [−100, 100] 0 Multimodal
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Table A1. Cont.

ID Test Function Dim Range f min Type

f15 f (x) =
n∑

i=1

∣∣∣xi sin(xi) + 0.1xi
∣∣∣ 30 [−10,10] 0 Multimodal

f16

f (x) = [1 + (x1 + x2 + 1)2(19− 14x1+3x2
1 − 14x2 +

6x1x2 + 3x2
2)]×[30 + (2x1 − 3x2) × (18− 32x1 +

12x2
1+48x2 − 36x1x2 + 27x2

2)]

2 [−2,2] 3 Multimodal

f17 f (x) = ( 1
500 +

25∑
j=1

1

j+
2∑

i=1
(xi−ai j)

6
)
−1

2 [−65.536,65.536] 0.998 Multimodal

f18 f (x) =
11∑

i=1
[ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]
2

4 [−5,5] 0 Multimodal

f19 f (x) =
n∑

i=1
x2

i + (
n∑

i=1
0.5ixi)

2
+ (

n∑
i=1

0.5ixi)
4

6 [−5,10] 0 Multimodal

f20 f (x) = −
4∑

i=1
ci exp(−

6∑
j=1

ai j(x j − pi j)
2) 6 [0,1] −3.32 Multimodal

References

1. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

2. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
3. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
4. Das, S.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution—An updated survey.

Swarm Evol. Comput. 2016, 27, 1–30. [CrossRef]
5. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179,

2232–2248. [CrossRef]
6. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.

Knowl. Based Syst. 2015, 89, 228–249. [CrossRef]
7. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
8. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96,

120–133. [CrossRef]
9. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci.

2012, 17, 4831–4845. [CrossRef]
10. Ozturk, C.; Hancer, E.; Karaboga, D. A novel binary artificial bee colony algorithm based on genetic operators.

Inf. Sci. 2015, 297, 154–170. [CrossRef]
11. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
12. Jain, I.; Jain, V.K.; Jain, R. Correlation feature selection based improved-binary particle swarm optimization

for gene selection and cancer classification. Appl. Soft Comput. 2018, 6, 203–215. [CrossRef]
13. Zhang, H.; Lin, W.; Chen, A. Path planning for the mobile robot: A review. Symmetry 2018, 10, 450. [CrossRef]
14. Phoemphon, S.; So-In, C.; Niyato, D.T. A hybrid model using fuzzy logic and an extreme learning machine

with vector particle swarm optimization for wireless sensor network localization. Appl. Soft Comput. 2018,
65, 101–120. [CrossRef]

15. Qin, T.C.; Zeng, S.K.; Guo, J.B.; Skaf, Z. State of health estimation of li-ion batteries with regeneration
phenomena: A similar rest time-based prognostic framework. Symmetry 2017, 9, 4. [CrossRef]

16. Wu, J.P.; Lin, B.L.; Wang, H.; Zhang, X.H.; Wang, Z.K. Optimizing the high-level maintenance planning
problem of the electric multiple unit train using a modified particle swarm optimization algorithm. Symmetry
2018, 10, 349. [CrossRef]

17. Wang, H.; Sun, H.; Li, C.H.; Rahnamayan, S.; Pan, J.S. Diversity enhanced particle swarm optimization with
neighborhood search. Inf. Sci. 2013, 223, 119–135. [CrossRef]

18. Joines, J.A.; Houck, C.R. On the use of non-stationary penalty functions to solve nonlinear constrained
optimization problems with GA’s. In Proceedings of the First IEEE Conference on Evolutionary Computation,
Orlando, FL, USA, 27–29 June 1994; pp. 579–584.

19. Fogel, D.B. An Introduction to Simulated Evolutionary Optimization. IEEE Trans. Neur. Netw. 1994, 5, 3–14.
[CrossRef]

http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.swevo.2016.01.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1016/j.ins.2014.10.060
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.asoc.2017.09.038
http://dx.doi.org/10.3390/sym10100450
http://dx.doi.org/10.1016/j.asoc.2018.01.004
http://dx.doi.org/10.3390/sym9010004
http://dx.doi.org/10.3390/sym10080349
http://dx.doi.org/10.1016/j.ins.2012.10.012
http://dx.doi.org/10.1109/72.265956


www.manaraa.com

Symmetry 2020, 12, 922 24 of 25

20. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

21. Yang, J.; Zhu, H.; Wang, Y. An orthogonal multi-swarm cooperative PSO algorithm with a particle trajectory
knowledge base. Symmetry 2017, 9, 15. [CrossRef]

22. Jensi, R.; Jiji, G.W. An enhanced particle swarm optimization with levy flight for global optimization.
Appl. Soft Comput. 2016, 43, 248–261. [CrossRef]

23. Turgut, O.E. Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of
plate fin heat exchangers. Appl. Math. Model. 2016, 40, 50–69. [CrossRef]

24. Qin, J.; Liu, Y.; Grosvenor, R.; Lacan, F.; Jiang, Z.G. Deep learning-driven particle swarm optimisation for
additive manufacturing energy optimisation. J. Clean. Prod. 2020, 245, 118702. [CrossRef]

25. Shi, Y. Optimization of PID parameters of hydroelectric generator based on adaptive inertia weight PSO.
In Proceedings of the IEEE 8th Joint International Information Technology and Artificial Intelligence
Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 1854–1857.

26. Tian, D.; Zhao, X.; Shi, Z. Chaotic particle swarm optimization with sigmoid-based acceleration coefficients
for numerical function optimization. Swarm Evol. Comput 2019, 51, 100573. [CrossRef]

27. Arasomwan, M.A.; Adewumi, A.O. On adaptive chaotic inertia weights in particle swarm optimization.
In Proceedings of the IEEE Symposium on Swarm Intelligence (SIS), Singapore, 16–19 April 2013; pp. 72–79.

28. Taherkhani, M.; Safabakhsh, R. A novel stability-based adaptive inertia weight for particle swarm optimization.
Appl. Soft Comput. 2016, 38, 281–295. [CrossRef]

29. Zhang, C.S.; Ning, J.X.; Lu, S.A.; Ouyang, D.T.; Ding, T.A. A novel hybrid differential evolution and particle
swarm optimization algorithm for unconstrained optimization. Oper. Res. Lett. 2009, 37, 117–122. [CrossRef]

30. Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016,
274, 292–305. [CrossRef]

31. Javidrad, F.; Nazari, M.; Javidrad, H.R. Optimum stacking sequence design of laminates using a hybrid
PSO-SA method. Compos. Struct. 2018, 185, 607–618. [CrossRef]

32. Chen, K.; Zhou, F.; Wang, Y.; Yin, L. An ameliorated particle swarm optimizer for solving numerical
optimization problems. Appl. Soft Comput. 2018, 73, 482–496. [CrossRef]

33. Bansal, J.C.; Deep, K. A modified binary particle swarm optimization for knapsack problems.
Appl. Math. Comput. 2012, 218, 11042–11061. [CrossRef]

34. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference
on Evolutionary Computation, Anchorage, AK, USA, 4–8 May 1998; pp. 69–73.

35. Arumugam, M.S.; Rao, M.V.C. On the performance of the particle swarm optimization algorithm with
various inertia weight variants for computing optimal control of a class of hybrid systems. Discrete Dyn.
Nat. Soc. 2006. [CrossRef]

36. Datta, D.; Figueira, J.R. A real-integer-discrete-coded particle swarm optimization for design problems.
Appl. Soft Comput. 2011, 11, 3625–3633. [CrossRef]

37. Datta, D.; Figueira, J.R. Graph partitioning by multi-objective real-valued metaheuristics: A comparative
study. Appl. Soft Comput. 2011, 11, 3976–3987. [CrossRef]

38. Gao, F.; Cui, G.; Wu, Z.; Yang, X. A novel multi-step position-selectable updating particle swarm optimization
algorithm. Acta Electron. Sin. 2009, 37, 529–537.

39. Ali, M.M.; Kaelo, P. Improved particle swarm algorithms for global optimization. Appl. Math. Comput. 2008,
196, 578–593. [CrossRef]

40. Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Appl.
2012, 391, 2193–2196. [CrossRef]

41. Thammano, A.; Teekeng, W. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop
scheduling problems. Int. J. Gen. Syst. 2015, 44, 499–518. [CrossRef]

42. Ho-Huu, V.; Nguyen-Thoi, T.; Truong-Khac, T.; Le-Anh, L.; Vo-Duy, T. An improved differential evolution
based on roulette wheel selection for shape and size optimization of truss structures with frequency
constraints. Neural. Comput. Appl. 2018, 29, 167–185. [CrossRef]

43. Peng, Y.; Peng, X.Y.; Liu, Z.Q. Statistic analysis on parameter efficiency of particle swarm optimization.
Acta Electron. Sin. 2004, 32, 209–213.

http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.3390/sym9010015
http://dx.doi.org/10.1016/j.asoc.2016.02.018
http://dx.doi.org/10.1016/j.apm.2015.05.003
http://dx.doi.org/10.1016/j.jclepro.2019.118702
http://dx.doi.org/10.1016/j.swevo.2019.100573
http://dx.doi.org/10.1016/j.asoc.2015.10.004
http://dx.doi.org/10.1016/j.orl.2008.12.008
http://dx.doi.org/10.1016/j.amc.2015.11.001
http://dx.doi.org/10.1016/j.compstruct.2017.11.074
http://dx.doi.org/10.1016/j.asoc.2018.09.007
http://dx.doi.org/10.1016/j.amc.2012.05.001
http://dx.doi.org/10.1155/DDNS/2006/79295
http://dx.doi.org/10.1016/j.asoc.2011.01.034
http://dx.doi.org/10.1016/j.asoc.2011.01.044
http://dx.doi.org/10.1016/j.amc.2007.06.020
http://dx.doi.org/10.1016/j.physa.2011.12.004
http://dx.doi.org/10.1080/03081079.2014.969252
http://dx.doi.org/10.1007/s00521-016-2426-1


www.manaraa.com

Symmetry 2020, 12, 922 25 of 25

44. Ikeguchi, T.; Sato, K.; Hasegawa, M. Chaotic Optimization for Quadratic Assignment Problems. In
Proceedings of the 2002 IEEE International Symposium on Circuits and Systems, Phoenix-Scottsdale, AZ,
USA, 26–29 May 2002; pp. 469–472.

45. Hayakawa, Y.; Marumoto, A.; Sawada, Y. Effects of the Chaotic Noise on the Performance of a Neural Netwok
Model for Optimization Problems. Phys. Rev. E 1995, 51, 2693–2696. [CrossRef]

46. Feng, Y.; Teng, G.F.; Wang, A.X.; Yao, Y.M. Chaotic inertia weight in particle swarm optimization. In
Proceedings of the 2007 Second International Conference on Innovative Computing, Information and Control,
Kumamoto, Japan, 5–7 September 2007; pp. 1899–1902.

47. Bansal, J.C.; Singh, P.K.; Saraswat, M.; Verma, A.; Jadon, S.S.; Abraham, A. Inertia weight strategies in particle
swarm optimization. In Proceedings of the 2011 Third World Congress on Nature and Biologically Inspired
Computing, Salamanca, Spain, 19–21 October 2011; pp. 633–640.

48. Wang, G.G.; Guo, L.H.; Gandomi, A.H.; Hao, G.S.; Wang, H.Q. Chaotic krill herd algorithm. Inf. Sci. 2014,
274, 17–34. [CrossRef]

49. Niu, P.; Chen, K.; Ma, Y.; Li, X.; Liu, A.; Li, G. Model turbine heat rate by fast learning network with tuning
based on ameliorated krill herd algorithm. Knowl. Based Syst. 2017, 118, 80–92. [CrossRef]

50. Chaturvedi, K.T.; Pandit, M.; Srivastava, L. Particle swarm optimization with time varying acceleration
coefficients for non-convex economic power dispatch. Int. J. Electron. Power 2009, 31, 249–257. [CrossRef]

51. Chen, K.; Zhou, F.; Liu, A. Chaotic dynamic weight particle swarm optimization for numerical function
optimization. Knowl. Based Syst. 2018, 139, 23–40. [CrossRef]

52. Elaziz, M.A.; Mirjalili, S. A hyper-heuristic for improving the initial population of whale optimization
algorithm. Knowl. Based Syst. 2019, 172, 42–63. [CrossRef]

53. Liu, J.; Gao, Y. Chaos particle swarm optimization algorithm. Comput. Sci. 2004, 31, 13–15. [CrossRef]
54. Li, T.H.S.; Kuo, P.H.; Ho, Y.F.; Liou, G.H. Intelligent control strategy for robotic arm by using adaptive

inertia weight and acceleration coefficients particle swarm optimization. IEEE Access 2019, 7, 126929–126940.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.51.R2693
http://dx.doi.org/10.1016/j.ins.2014.02.123
http://dx.doi.org/10.1016/j.knosys.2016.11.011
http://dx.doi.org/10.1016/j.ijepes.2009.01.010
http://dx.doi.org/10.1016/j.knosys.2017.10.011
http://dx.doi.org/10.1016/j.knosys.2019.02.010
http://dx.doi.org/10.3724/SP.J.1087.2008.00322
http://dx.doi.org/10.1109/ACCESS.2019.2939050
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


www.manaraa.com

© 2020. This work is licensed under
http://creativecommons.org/licenses/by/3.0/ (the “License”).  Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.


	Introduction 
	Related Theory about PSO 
	Hybrid Multi-Step Probability Selection Particle Swarm Optimization with Sine Chaotic Inertial Weight and Symmetric Tangent Chaotic Acceleration Coefficients (MPSPSO-ST) 
	Hybrid Multi-Step Probability Selection Particle Swarm Optimization (MPSPSO) 
	Sine Chaotic Inertia Weight  
	Symmetric Tangent Chaotic Acceleration Coefficients c1,c2  

	Experimental Results and Discussion 
	Comparison of MPSPSO-ST with Standard PSO, Basic PSO and MPSPSO 
	Comparison of MPSPSO-ST with CPSO, PSO-NDAC, AIWCPSO, DE, MFO and SCA 

	Conclusions 
	
	References

